Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

نویسندگان

  • Yan Wen
  • Bitao Liu
  • Wei Zeng
  • Yuhua Wang
چکیده

Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations

To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order o...

متن کامل

Supercritical Antisolvent Precipitation of TiO2 with Tailored Anatase/Rutile Composition for Applications in Redox Catalysis and Photocatalysis

TiO2 with tailored anatase/rutile composition has been prepared from the supercritical antisolvent (SAS) precipitation of a range of titanium alkoxides. The calcination of the SAS TiO2 was monitored by in situ powder X-ray diffraction to determine the optimal calcination conditions for the formation of a mixed anatse/rutile phase TiO2. The SAS precipitated material calcined at 450 °C produced a...

متن کامل

Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.

A synergistic effect between anatase and rutile TiO2 is known, in which the addition of rutile can remarkably enhance the photocatalytic activity of anatase in the degradation of organic contaminants. In this study, mixed-phase TiO2 nanocomposites consisting of anatase and rutile nanoparticles (NPs) were prepared for use as photoanodes in dye-sensitized solar cells (DSSCs) and were characterize...

متن کامل

Photocatalytic degradation of E. coli bacteria using TiO2/SiO2 nanoparticles with photodeposited platinum

In this work, TiO2 /SiO2 (pure anatase), and TiO2 /SiO2 (anatase/rutile) nano-photocatalysts are prepared by using sol-gel method and control of acidity. The particles size is calculated using Scheerer, s equation and is estimated to be around 7-15 nm. In order to improve the photocatalytic activity of TiO2 /SiO2 ,1% (wt) platinum particles are loaded on both catalysts using photoreductive meth...

متن کامل

Photocatalytic Activities Enhanced by Au-Plasmonic Nanoparticles on TiO2 Nanotube Photoelectrode Coated with MoO3

Although TiO2 was formerly a common material for photocatalysis reactions, its wide band gap (3.2 eV) results in absorbing only ultraviolet light, which accounts for merely 4% of total sunlight. Modifying TiO2 has become a focus of photocatalysis reaction research, and combining two metal oxide semiconductors is the most common method in the photocatalytic enhancement process. When MoO3 and TiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 20  شماره 

صفحات  -

تاریخ انتشار 2013